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Introduction 

 
In	Project	1,	you	created	an	ISA-level	simulator	for	the	main	functionality	of	the	MIPS	
ISA.	While	such	a	simulator	is	able	to	execute	any	MIPS	program	and	give	correct	results,	
it	is	not	enough	to	assess	the	performance	of	a	given	implementation.	As	you	know,	
implementations	of	a	given	ISA	may	differ	widely	in	performance	based	on	their	use	of	
pipelining,	their	cache	size	and	organization,	etc. 

 
In	Project	3,	you	are	to	create	a	simulator	for	a	five-stage	pipelined	implementation	of	the	
MIPS	ISA	(as	seen	in	class).	As	in	Project	1,	the	simulator	is	to	be	written	in	C++,	though	
you	may	write	a	C-style	implementation	in	C++	if	you	wish.	The	simulator	must	be	capable	
of	handling	all	the	instructions	required	for	the	ISA-level	simulator	from	Project	1	(LL/SC	
is	not	included	in	this	project	in	any	way	).	The	simulator	must	implement	full	
forwarding	and	bypassing,	and	a	single	branch	delay	slot	(so	branches	must	be	resolved	in	
the	Decode	stage).	The	simulator	must	implement	a	memory	hierarchy	with	one	level	of	
cache,	with	separate	I	and	D	caches.	It	must	be	capable	of	running	for	a	specified	number	of	
cycles	and	providing	statistics	about	the	execution	for	the	set	number	of	cycles	(details	are	
provided	later	in	the	specification). 

 
As	the	poll	results	suggest,	you	will	work	in	groups	of	four. 

 
Note:	In	the	rest	of	the	specification,	sections	whose	headings	are	marked	with	(***)	are	
identical	to	their	counterparts	from	the	Project	1	spec	and	are	provided	here	for	reference. 

 
Overview 

 
As	opposed	to	Project	1,	where	you	executed	an	instruction	all	at	once,	in	this	project	you	will	
simulate	how	the	instructions	would	actually	execute	on	a	five-stage	pipelined	implementation.	
As	seen	in	class,	the	five	stages	of	the	pipeline	are	Fetch	(IF),	Decode	(ID),	Execute	(EX),	
Memory	(MEM),	and	Writeback	(WB).	Your	simulator	must	run	cycle-by-cycle  
- fetching,	decoding,	executing,	and	writing	back	instructions,	and	accessing	memory	as	
appropriate.	In	order	to	properly	simulate	the	execution	of	instructions	in	the	pipeline,	
you	will	need	to	keep	track	of	control	signals,	hazards,	and	the	like.	

 
Your	simulator	must	accurately	simulate	the	following:  

 
Full	forwarding	and	bypassing. 

o This	includes	forwarding	from	a	load	to	the	data	input	of	a	store	(i.e.	register	rt)	
without	a	stall	cycle	in	between	(in	other	words,	a	WB->MEM	forward	from	the	
load	to	the	store).	See	page	312	in	the	textbook	for	an	overview	of 



such	forwarding.	All	other	cases	of	forwarding	to	a	store	should	
forward	when	the	store	is	in	the	EX	stage. 

o This	also	includes	forwarding	to	ID	for	the	execution	of	branches.	You	may	
need	to	add	stall	cycles	between	the	forwarding	instruction	and	the	branch	
in	ID	for	the	forwarding	to	work;	see	page	319	in	the	text	for	further	details.  

A	single	branch	delay	slot	(so	branches	are	resolved	in	the	ID	stage)  
One	level	of	blocking	caches	(separate	I	and	D	caches)	(details	provided	in	
the	“Caches”	section)  
One-cycle	load-use	stalls,	as	discussed	in	class 

 
The	final	results	(registers	and	memory)	of	your	cycle-accurate	simulator	for	a	given	
program	must	match	those	of	a	correct	ISA-level	simulator	from	Project	1.	To	provide	
you	with	a	starting	point/reference	for	your	cycle-accurate	simulator,	the	source	code	for	
the	solution	of	Project	1	has	been	posted	on	Canvas. 

 
The	instructions	that	must	be	supported	by	your	simulator	are	identical	to	those	that	were	
required	for	Project	1.	For	details,	please	see	the	annotated	MIPS	ISA	PDF	in	the	Project	3	
assignment	on	Canvas. 

 
The	 instruction	 decode	 portion	 of	 the	 simulator	 should	 use	 bit	manipulations	 to	 discern	 the	
instruction	type	and	relevant	fields	and	values	from	the	binary	encoding	of	the	instructions. 

 
All	of	the	state	(aside	from	the	state	of	memory,	see	“Memory”	section	for	details	of	the	
provided	memory	abstraction)	should	be	mimicked	by	having	appropriate	program	
variables	and	objects.	Note	that	you	will	also	need	to	keep	track	of	the	required	state	
and	values	in	the	I	and	D	caches. 

 
The	MIPS	ISA	does	not	contain	a	HALT	instruction,	so	as	in	Project	1,	we	use	the	code	
0xfeedfeed	to	signify	the	end	of	the	code	section	of	a	program.	Once	the	0xfeedfeed  
instruction	completes	its	IF	stage,	instruction	fetch	should	stop	fetching	instructions	and	
insert	nops	into	the	pipeline	following	the	0xfeedfeed,	unless	an	exception	occurs.	You  
should	halt	execution	when	the	0xfeedfeed	has	completed	its	WB	stage.	For	further	
details	on	the	requirements	for	starting	and	ending	execution	as	well	as	executing	for	a	
specific	number	of	cycles,	please	see	the	“Execution	Flow”	and	“Exceptions”	sections. 

 
We	have	provided	you	with	an	initial	test	case,	but	you	should	certainly	do	more.	You	may	
find	it	helpful	to	write	test	cases	and	compare	their	output	from	the	ISA-level	simulator	to	
that	from	your	cycle-accurate	simulator.	Remember	–	your	cycle-accurate	simulator	should	
generate	results	identical	to	a	correct	ISA-level	simulator. 

 
Caches 

 
You	must	implement	one	level	of	cache	in	your	simulator	for	this	project,	with	separate	I	
and	D	caches.	Your	caches	must	be	write-back,	write-allocate,	blocking	caches.	Your	work	
must	be	capable	of	simulating	a	variety	of	cache	and	block	sizes.	Furthermore,	they	must	
be	capable	of	simulating	either	a	direct-mapped	or	2-way	set-associative	cache	(LRU	
replacement	policy). 

 
The	information	regarding	the	cache	configuration	you	must	implement	on	a	given	run	
of	the	simulator	is	provided	in	CacheConfig	structs,	which	are	defined	in	CacheConfig.h. 



 
You	may	assume	that:  

- the	block	size	will	always	be	a	power	of	2	(in	bytes)	
- the	cache	size	will	always	be	a	multiple	of	block	size	*	number	of	ways	
- the	number	of	sets	in	the	cache	will	always	be	a	power	of	2	

 
You	are	required	to	keep	track	of	the	hits	and	misses	in	each	cache	through	the	
execution.	You	may	do	this	in	any	way	you	choose,	but	you	must	provide	the	final	tally	of	
hits	and	misses	to	the	printSimStats(..)	function	in	a	SimulationStats	struct. 

 
A	data	cache	access	is	serviced	during	the	MEM	phase	of	the	pipeline,	while	an	instruction	
cache	access	is	serviced	during	the	IF	phase.	The	additional	latency	of	a	cache	miss	(i.e.	the	
miss	penalty)	is	a	parameterized	number	provided	by	the	CacheConfig	struct	for	a	given	cache.	
A	reasonable	starting	point	for	debugging	would	be	to	set	the	miss	penalty	to	5	cycles.	In	a	
typical	processor	today,	the	L1	I	and	D	caches	would	merge	their	miss	streams	into	a	set	of	
requests	for	a	unified	on-chip	L2.	Because	we	are	not	asking	you	to	simulate	multiple	levels	of	
caches,	you	may	assume	that	main	memory	can	accept	up	to	two	requests  
in	any	cycle	(one	from	the	I	cache	and	one	from	the	D	cache),	as	well	as	a	writeback	from	the	
D	cache	in	the	same	cycle.	Furthermore,	you	should	assume	that	writebacks	do	not	incur	
any	additional	latency.	Thus,	if	you	miss	on	an	address	and	have	to	evict	a	dirty	cache	line	to	
make	space	for	it	in	the	cache,	you	should	not	add	any	extra	latency	for	the	writeback	–	only	
the	miss	latency	of	the	miss. 

 
As	you	are	implementing	separate	I	and	D	caches,	you	may	assume	that	your	simulator	
will	never	be	tested	with	self-modifying	code.	In	other	words,	instructions	will	never	be	
modified	by	data	operations.	You	may	also	assume	that	your	caches	will	never	need	to	
service	unaligned	accesses. 

 
Finally,	in	the	event	of	a	cache	miss,	you	should	stall	the	entire	processor	until	the	data	is	
available,	whether	instructions	in	a	given	stage	depend	on	the	stall	or	not.	So	for	instance,	
when	there	is	an	I-cache	miss	in	IF,	all	the	other	stages	in	the	pipeline	are	also	stalled	until	
the	I-cache	provides	the	data,	even	though	the	other	stages	may	not	need	the	I-cache	miss	
to	complete	in	order	to	generate	correct	results. 

 
Execution	Flow 

 
In	Project	1,	you	were	responsible	for	writing	the	simulator	functionality	as	well	as	setup	
and	teardown	–	in	other	words,	you	wrote	both	the	simulation	functionality	and	the	
main()	function	that	called	into	that	functionality.	This	setup	does	not	allow	automatic	
graders	(or	you)	to	stop	the	simulator	part	of	the	way	through	the	execution	and	dump	the	
current	state,	and	so	is	not	conducive	to	testing	the	correctness	of	a	pipelined	
implementation.	As	such,	for	Project	3,	the	execution	flow	is	somewhat	different. 

 
The	major	difference	in	execution	flow	is	that	you	do	not	write	main()	in	the	cycle_sim.cpp	that	
you	turn	in.	Instead,	you	are	required	to	implement	four	functions	(initSimulator,	runCycles,	
runTillHalt,	and	finalizeSimulation)	that	allow	us	to	initialize,	run,	and	finalize	your	simulation	
in	a	variety	of	different	ways.	The	code	for	main()	(which	calls	these	functions	to	accomplish	
the	simulation)	is	contained	in	a	“	driver”	C++	file,	which	is	provided	by	us	for	the	test	cases	you	
will	be	graded	on.	We	provide	an	example	driver	file	to	you	for 



the	load_use.asm	test	case.	You	will	want	to	write	your	own	drivers	to	test	your	code	
across	a	variety	of	cache	configurations	and	at	various	points	in	a	program’s	execution. 

 
The	driver	is	responsible	for	the	following: 

 
-Creating	a	MemoryStore	and	reading	the	contents	of	a	provided	binary	file	into	it 
-Setting	the	parameters	of	CacheConfig	objects	provided	to	initSimulator(..)	according	to	
the	caches	to	be	tested  
-Calling	into	runCycles(..)	and/or	runTillHalt(..)	to	execute	the	simulation	in	chunks	or	
in	one	go  
-Calling	finalizeSimulation()	to	generate	register	and	memory	output,	as	well	as	statistics 

 
We	will	use	different	drivers	for	different	test	cases	(and	possibly	test	a	given	test	case	
with	multiple	drivers	to	check	functionality	across	different	cache	organizations).	You	
should	write	your	own	drivers	when	testing	to	check	different	scenarios. 

 
The	driver	organization	allows	simulation	to	be	stopped	at	an	arbitrary	cycle	and	
statistics	to	be	printed	out.	We	provide	you	with	a	function	that	prints	out	the	provided	
state	of	the	pipeline	at	a	given	cycle,	which	you	are	required	to	call	at	certain	points	with	a	
proper	parameter	(see	below).	This	function	is 

 
dumpPipeState(PipeState	&	state) 

 
The	parameters	to	the	function	provide	the	cycle	to	be	printed	out	as	well	as	the	five	
instructions	currently	in	the	pipeline	(in	binary	format)	(through	the	PipeState	struct).	
The	format	of	the	output	is	similar	to	the	example	output	below: 

 
Cycle: 23 
-----------------------------------------------------------------  
lw $t4, 8($t1) | nop | addi $s0, $s3, 0x4 | lui $t0, 0x4 | nop 
----------------------------------------------------------------- 

 
The	dumpPipeState	function	appends	this	output	to	the	pipe_state.out	file	in	the	
directory	the	simulator	is	called	in.	(The	pipe_state.out	file	should	be	initialized	to	an	
empty	file	by	a	driver	before	calling	into	the	simulator	for	the	first	time,	to	erase	any	old	
content.	All	drivers	we	use	will	obey	this	requirement.) 

 
If	no	instructions	have	been	loaded	into	a	stage	of	the	pipeline	yet	(for	example,	when	the	I-
cache	is	fetching	instructions	from	main	memory	at	the	start	of	simulation),	then	you	
should	report	a	nop	(sll	$zero,	$zero,	0)	as	being	present	in	that	stage.	Similarly,	as	the	halt	
instruction	passes	through	the	pipeline,	you	should	report	nops	following	it	through	the	
pipeline.	Furthermore,	if	you	have	an	unknown	instruction	in	IF	(for	instance,	if	you	have	
an	I-cache	miss	when	fetching	the	next	instruction),	use	the	value	0xdeefdeef	for	the	
instruction	in	IF,	which	will	print	out	as	“UNKNOWN”. 

 
Note	the	following	points	about	the	output	of	dumpPipeState: 

 
-Immediates	and	jump	address	fields	of	instructions	are	displayed	as	unsigned	hex	
numbers,	apart	from	offsets	for	load	and	store	operations,	which	are	displayed	as	
positive	or	negative	decimal	numbers. 



-Branches	and	jumps	do	not	show	the	actual	computed	branch	address	or	jump	address,	
but	the	raw	value	in	the	“immediate”	or	“address”	field	of	the	branch	or	jump. 

 
The	four	functions	you	are	required	to	implement	in	your	simulator	as	hooks	for	the	
driver	are	explained	below.	Note	that	these	should	not	be	the	only	functions	in	your	
simulator.	Good	software	design	involves	structuring	your	code	for	reuse	and	clarity. 

 
int	initSimulator(CacheConfig	&	icConfig,	CacheConfig	&	dcConfig,	
MemoryStore	*mainMem) 

 
When	called,	this	function	should	set	up	and	initialize	all	state	required	by	your	simulator,	
including	an	I-cache	and	a	D-cache	configured	as	specified	in	icConfig	and	dcConfig	
respectively	(see	the	“Caches”	section),	but	NOT	begin	execution.	The	main	memory	that	
you	should	use	is	provided	as	a	pointer	to	a	MemoryStore.	Unlike	Project	1,	you	are	not	
responsible	for	reading	a	binary	file	representing	the	program	into	the	MemoryStore.	This	
is	taken	care	of	by	the	driver	(as	stated	above).	We	do	not	pay	attention	to	the	return	
value	of	this	function	in	our	grading.	The	signature	allows	a	return	value	so	that	you	can	
return	success/failure	codes	to	aid	in	your	debugging	if	you	wish. 

 
int	runCycles(uint32_t	cycles) 

 
When	called,	this	function	should	run	your	simulation	for	the	number	of	cycles	specified	in	the	
parameter,	and	call	the	dumpPipeState	function	with	the	instructions	present	in	the	pipeline	
during	the	last	cycle	of	the	run.	So	for	example,	if	runCycles(40)	is	called	at	the	start	of	
simulation,	the	simulator	should	run	for	40	cycles	(i.e.	cycles	0	through	39),	then	call 
dumpPipeState	with	the	instructions	present	in	the	pipeline	during	cycle	39,	and	then	
return.	Note	that	being	able	to	check	the	state	of	your	simulator	after	each	cycle	is	very  
useful	from	a	debugging	perspective. 

 
If	the	halt	instruction	0xfeedfeed	completes	its	writeback	stage	before	the	simulator	has	run	
for	the	specified	number	of	cycles,	your	simulator	should	call	dumpPipeState	after	the	cycle	
in	which	the	halt	instruction	finishes	its	writeback	stage	(so	the	halt	instruction	should	be	in	
WB	in	the	dumped	pipe	state),	and	then	return	from	runCycles(..). 

 
If	the	specified	number	of	cycles	were	simulated,	the	function	should	return	0.	If	the	end	of	
the	program	was	reached	prior	to	the	total	number	of	cycles	being	simulated,	the	function	
should	return	1. 

 
int	runTillHalt() 

 
This	function	is	similar	to	runCycles(..)	above,	except	that	the	function	simulates	execution	
until	the	halt	instruction	has	reached	its	writeback	stage.	You	must	call	dumpPipeState	
after	the	cycle	in	which	the	halt	instruction	finishes	its	writeback	stage	before	returning	
from	this	function. 

 
As	in	initSimulator,	we	do	not	pay	attention	to	the	return	value	of	this	function,	but	allow	
for	return	values	to	make	it	easier	for	you	to	debug	your	simulator. 

 
int	finalizeSimulator() 



When	called,	this	function	should	do	the	following: 
 

-	Record	the	number	of	cycles	simulated,	I	and	D	cache	hits	and	misses	in	a	
SimulationStats	struct,	and	call	printSimStats(..)	with	this	struct.	The	printSimStats	
function	prints	the	provided	information	in	a	specific	format	to	a	sim_stats.out	file	in	the	
directory	the	simulator	is	called	in.  
-	Write	back	all	dirty	values	in	the	data	cache	to	main	memory.	This	final	draining	of	the	
data	cache	should	not	be	simulated	cycle-accurately.	It	is	only	necessary	to	ensure	that	your	
dumped	memory	state	is	identical	to	that	which	would	be	produced	by	an	ISA-level	
simulator.  
-	Call	dumpRegisterState	with	an	initialized	RegisterInfo	struct	(as	you	did	at	the	end	
of	simulation	in	Project	1).  
-	Call	dumpMemoryState	with	the	MemoryStore	representing	main	memory.	As	in	Project	
1,	the	dumpMemoryState	function	will	dump	the	contents	of	a	region	of	memory	that	will	
vary	on	a	test	by	test	basis.	It	is	your	responsibility	to	ensure	that	all	of	memory	is	
appropriately	updated	by	the	running	of	your	program,	as	you	will	not	know	which	part	of	
memory	we	will	be	examining	for	correctness. 

 
You	have	a	large	amount	of	freedom	with	regard	to	your	implementation	of	the	pipeline	and	
caches.	You	may	use	a	C-style	implementation	or	a	C++	object-oriented	implementation,	as	long	
as	you	correctly	implement	the	requirements,	including	the	four	functions	above.	One	strategy	
might	be	to	develop	the	pipeline	and	cache	simulators	separately,	and	then	hook	them	together.	
For	example,	you	could	build	a	“free-standing”	cache	simulator	and	test	it	with	a	known	
reference	trace	as	input,	before	you	get	into	the	complexities	of	considering	its	interactions	with	
pipelined	execution.	Likewise,	you	could	do	most	of	the	pipelined  
simulation	assuming	an	idealized	memory	hierarchy	(all	hits)	as	long	as	you	are	ready	
to	deal	later	with	the	issues	of	plugging	in	a	non-idealized	I	and	D	cache	module. 

 
Other	Implementation	Notes: 

 
-For	consistency,	initialize	all	registers	to	have	a	value	of	0	upon	startup.	(The	MemoryStore	
already	internally	initializes	all	memory	locations	to	have	a	value	of	0	upon	startup.) 
- Once	the	0xfeedfeed	instruction	completes	its	IF	stage,	instruction	fetch	should	stop	
fetching	instructions	and	insert	nops	into	the	pipeline	following	the	0xfeedfeed,	unless	
an	exception	occurs.	You	should	halt	execution	when	the	0xfeedfeed	has	completed	its	
WB	stage.		
-The	jal	instruction	modifies	the	PC	at	the	end	of	its	ID	stage,	but	only	updates	the	
return	address	register	when	it	reaches	the	WB	stage.	
-Dependencies	on	the	zero	register	do	not	cause	stalls.	

 
Simulator	Compilation 

 
To	compile	your	simulator,	you	will	need	to	link	your	code	with	a	driver	(see	the	
“Execution	Flow”	section)	and	the	implementation	of	the	memory	abstraction	and	utility	
functions	provided	in	UtilityFunctions.o	as	follows	(assuming	your	file	is	called	
cycle_sim.cpp,	as	the	submission	requires): 

 
g++	-o	cycle_sim	cycle_sim.cpp	driver.cpp	UtilityFunctions.o 



where	driver.cpp	is	the	driver	you	want	to	use.	So	for	example,	if	you	want	to	compile	your	
simulator	with	the	provided	example	driver,	you	can	do	the	following	(assuming	you’re	in	
the	src/	directory	of	the	provided	tarball):	
 

g++	-o	cycle_sim	cycle_sim.cpp	../test/example_driver.cpp	UtilityFunctions.o		
	

Provided	Files: 
 

To	allow	you	to	concentrate	on	building	the	core	of	the	simulator,	we	provide	you	with	a	
number	of	files	containing	abstractions,	utilities,	and	utility	functions.	These	files	build	
on	those	provided	for	Project	1,	and	are	contained	in	the	project	tarball	on	Canvas.	The	
following	is	a	list	of	the	relevant	files	ordered	by	directory	structure:  
bin/ 

mips-linux-gnu-as 
mips-linux-gnu-objcopy 
mips-linux-gnu-objdump 

src/  
EndianHelpers.h 
example.cpp 
MemoryStore.h 
RegisterInfo.h 
DriverFunctions.h 
CacheConfig.h 
UtilityFunctions.o 

test/ 
load_use.asm  
load_use_mem_state.out 
load_use_reg_state.out 
example_driver.cpp 
load_use_pipe_state.out  
load_use_sim_stats.out 

 
Below	is	a	short	description	of	each	of	the	above	files. 

 
mips-linux-gnu-as	–	MIPS	assembler.	Converts	MIPS	text	assembly	to	binary	ELF	files. 

 
mips-linux-gnu-objcopy	–	MIPS	object	file	copier/translator.	Used	to	convert	ELF	files	
to	flat	binary	files	that	are	read	by	your	simulator. 

 
mips-linux-gnu-objdump	–	MIPS	object	file	disassembler.	Used	to	inspect	the	
instructions	in	a	binary	ELF	file. 

 
EndianHelpers.h	–	Signatures	of	the	functions	to	convert	unsigned	integers	from	
little-endian	to	big-endian. 

 
example.cpp	–	An	example	C++	file	showing	use	of	the	memory	abstraction. 

 
MemoryStore.h	–	The	interface	to	the	memory	abstraction. 



RegisterInfo.h	–	Signature	of	the	register	file	dump	function	and	definition	of	
the	RegisterInfo	struct	passed	to	it	as	an	argument. 

 
DriverFunctions.h	–	Signatures	of	the	initSimulator,	runCycles,	runTillHalt,	and	
finalizeSimulator	functions	which	you	must	implement	(see	the	“Execution	Flow”	
section).	Also	contains	the	definitions	of	the	PipeState	and	SimulationStats	structs,	which	
you	must	fill	and	provide	to	the	dumpPipeState(..)	and	printSimStats(..)	functions	(whose	
signatures	are	also	in	this	file)	as	outlined	in	the	“Execution	Flow”	section. 

 
CacheConfig.h	–	Struct	that	allows	the	configuration	of	a	cache	(size,	block	
size,	associativity,	miss	latency)	to	be	specified. 

 
UtilityFunctions.o	–	A	binary	file	containing	the	implementations	of	the	memory	
abstraction	and	other	utility	functions.	This	file	is	not	intended	to	be	human-readable. 

 
load_use.asm	–	An	example	MIPS	assembly	test	program. 

 
load_use_mem_state.out	–	The	memory	state	dump	of	running	the	compiled	version	
of	load_use.asm. 

 
load_use_reg_state.out	–	The	register	state	dump	of	running	the	compiled	version	
of	load_use.asm. 

 
example_driver.cpp	–	A	driver	(see	the	“Execution	Flow”	section)	which	can	be	used	to	
run	load_use.asm,	dumping	its	pipeline	state	at	one	point	in	its	execution. 

 
load_use_pipe_state.out	–	The	register	state	dump	of	running	the	compiled	version	
of	load_use.asm	with	the	driver	example_driver.cpp. 

 
load_use_sim_stats.out	–	The	overall	simulation	statistics	from	running	the	
compiled	version	of	load_use.asm	with	a	simulator	and	the	configuration	of	the	driver	
file	example_driver.cpp. 

 
Exceptions 

 
Your	simulator	must	support	handling	two	types	of	exceptions:	arithmetic	overflow	and	
illegal	instructions.	You	are	NOT	required	to	implement	the	MIPS	exception	registers	like	
the	EPC.	The	only	thing	your	simulator	must	do	on	an	exception	is	to	jump	to	the	exception	
address	and	begin	executing	the	instructions	at	that	address.	In	MIPS,	the	exception	address	
is	0x80000180,	but	the	address	space	for	your	simulator	is	only	0x10000	bytes	large,	so	we	
require	you	to	jump	to	address	0x8000	instead. 

 
When	an	exception	occurs,	you	should	NOT	update	state	for	the	instruction	triggering	the	
exception.	So	for	instance,	if	an	add	triggers	arithmetic	overflow,	you	should	not	update	the	
destination	register.	Simply	jump	to	the	exception	address	and	continue	execution	as	
stated	above. 

 
From	an	implementation	standpoint,	illegal	instruction	exceptions	should	be	detected	in	ID	
and	overflow	exceptions	in	EX.	When	an	exception	is	detected,	the	simulator	must	squash	both	
the	excepting	instruction	and	all	instructions	after	it	and	replace	them	with	nops.	It 



should	also	modify	the	PC	to	point	to	the	exception	address	so	that	the	pipeline	begins	
fetching	from	the	exception	address	the	cycle	after	the	exception	occurred.	Furthermore,	
all	instructions	that	were	before	the	excepting	instruction	must	complete	execution	
successfully,	unless	they	trigger	exceptions	themselves.	Note	that	it	is	possible	for	two	
instructions	to	trigger	exceptions	in	the	same	cycle. 

 
Note	that	an	exception	may	occur	while	the	halt	instruction	0xfeedfeed	is	in	IF	or	ID.	In	such	a	
case,	if	IF	has	stopped	fetching	instructions	and	is	inserting	nops	into	the	pipeline,	the	IF	stage	
should	be	restarted	with	the	exception	address	because	the	halt	instruction	has	been	squashed.	
You	should	only	stop	execution	when	the	halt	instruction	reaches	its	WB	stage. 

 
What	to	Hand	in 

 
Your	simulator	should	be	written	in	C++.	The	compiler	for	grading	will	be	g++	. 

 
You	only	need	to	submit	your	implementation	of	the	core	simulator,	which	should	be	in	one	
file	named	cycle_sim.cpp.	You	should	not	submit	any	drivers	that	you	may	have	written	for	
testing. 

 
Please	use	the	Canvas	site	to	turn	in	your	cycle_sim.cpp	file. 

 
Your	cycle_sim.cpp	file	must	compile	properly	on	the	Nobel	cluster	using:  
g++	-o	cycle_sim	cycle_sim.cpp	driver.cpp	UtilityFunctions.o 

 
where	driver.cpp	is	a	valid	driver	file	as	outlined	in	the	“Execution	Flow”	section. 

 
If	we	cannot	compile	your	source	file,	we	cannot	grade	your	assignment	and	you	will	have	
to	resubmit;	the	delay	will	be	taken	as	late	days. 

 
Grading 

 
Grading	will	 consist	mainly	of	 running	 test	MIPS	binaries	 (including	but	not	 limited	 to	any	
sample	binaries	we	give	you)	through	your	simulator.	These	test	binaries	will	thoroughly	test	
the	operation	of	instructions.	Particular	attention	will	be	paid	to	“corner	cases”. 
Correctness	will	be	determined	both	by	the	final	register	values,	memory	results,	and	
statistics	of	the	simulator’s	program	execution	as	well	as	by	snapshots	of	pipeline	state	at	
various	cycles	during	the	execution.	This	allows	you	to	get	partial	credit	even	if	your	final	
results	are	not	completely	correct.	You	will	get	back	a	“score	sheet”	indicating	what	
instructions	had	problems	and	what	kinds	of	problems.	This	represents	75	points	of	your	
grade. 

 
We	will	also	look	at	your	source	code	to	determine	whether	instructions	are	implemented	
correctly	(i.e.	we	will	not	rely	solely	on	test	cases).	Code	which	is	difficult	for	us	to	
understand	(i.e.	uncommented	or	incorrectly	commented)	will	lose	some	points.	Clarity	of	
code	and	proper	commenting	represents	15	points	of	your	grade. 

 
Finally,	efficiency	matters.	Excessively	slow	or	needlessly	inefficient	simulators	will	be	
penalized.	This	represents	10	points	of	your	grade. 



Test	case	structure	(***) 
 

Test	cases	for	this	project	are	MIPS	assembly	files	consisting	entirely	of	a	single	.text	
section.	Any	data	values	that	must	have	specific	values	for	the	program	to	work	must	be	
manually	listed	at	the	end	of	the	file	(after	0xfeedfeed)	using	.word	directives.	For	
example,	consider	the	following	assembly	program: 

 
la	$t1,	20 
la	$t2,	24 
lw	$t3,	0($t1) 
sw	$t3,	0($t2) 
.word	0xfeedfeed 
.word	0xac 
.word	0xdb 

 
Each	instruction	in	the	above	program	is	32	bits	=	4	bytes.	Thus,	the	last	instruction	
is	located	at	bytes	12-15. 

 
A	“.word”	directive	fills	the	corresponding	location	in	the	binary	file	with	the	raw	data  
provided	to	the	directive.	For	instance,	the	.word	directive	for	0xfeedfeed	is	at	address	16	=	
0x10,	so	the	directive	causes	bytes	16-19	to	get	filled	with	0xfeedfeed.	Likewise,	bytes	20-  
23	are	filled	with	0xac,	and	bytes	24-27	are	filled	with	0xdb.	(This	can	vary	slightly	if	
the	MIPS	assembler	adds	a	word	or	two	of	padding	–	see	the	“Compilation”	section.) 

 
Thus,	when	the	third	instruction	reads	from	address	20,	it	will	read	the	value	0xac	(since	
no	other	instruction	has	written	to	it	beforehand).	Likewise,	when	the	fourth	instruction	
stores	to	address	24,	it	will	overwrite	the	value	of	0xdb.	Note	that	it	is	quite	possible	for	a	
program	to	access	memory	locations	in	its	execution	other	than	those	locations	initialized	
by	.word	directives. 

 
At	some	point,	you	may	also	need	the	.align	directive	in	order	to	skip	bytes	till	you	reach	a 
required	alignment.	For	instance,	if	the	previous	lines	of	the	file	reach	address	0xa,	then	a 
“.align	4”	directive	will	skip	bytes	(filling	them	with	0)	until	it	reaches	an	address	aligned	for 
4	bytes	(in	this	case,	address	0xc). 

 
Test	Case	Compilation	(***) 

 
To	compile	test	cases,	you	should	use	a	combination	of	mips-linux-gnu	-as	and	mips-
linux-gnu-objcopy.	For	example,	to	compile	the	example	test	case	(assuming	you	have	
the	provided	binaries	in	your	PATH),	run	the	following	commands: 

 
mips-linux-gnu-as	-march=mips32	fib.asm	-o	fib.elf	
mips-linux-gnu-objcopy	fib.elf	-j	.text	-O	binary	fib.bin 

 
The	first	command	assembles	the	text	assembly	file	into	a	binary	ELF	file.	This	ELF	file	
then	needs	to	be	translated	into	a	flat	binary	file	that	only	contains	the	code	and	any	.word	
directives	you	may	have	added.	This	is	done	by	calling	mips-linux-gnu-objcopy	on	the	.text	
section	of	the	ELF	file	as	shown	in	the	second	command.	The	fib.bin	file	created	by	the	
second	command	should	be	the	input	to	your	simulator. 



We	suggest	you	create	a	script	or	Makefile	to	automate	the	running	of	the	above	
two	commands	and	make	it	easy	for	you	to	compile	multiple	test	cases. 

 
The	MIPS	assembler	may	add	an	extra	word	or	two	of	zero	padding	at	certain	points	in	your  
code,	after	the	code	and	before	your	.word	directives,	and	after	your	.word	directives	as	
well.	Make	sure	any	offsets	you	use	to	read/write	values	to	the	.word	directive	locations  
take	this	padding	into	account. 

 
To	inspect	the	code	in	an	ELF	file,	you	can	use	the	mips-linux-gnu-objdump	utility.	
For	example,	running	the	following	command 

 
mips-linux-gnu-objdump	-D	-j	.text	fib.elf 

 
disassembles	the	.text	section	of	the	ELF	file,	allowing	you	to	see	the	instructions	in	it.	This	
can	be	useful	to	see	what,	if	any,	extra	padding	the	assembler	has	added	when	assembling	
your	file. 

 
If	you	want	to	examine	the	contents	of	your	flat	binary	file,	you	can	use	hexdump.	
For	instance,	running 

 
hexdump	-e	'"%08_ax:"	4/1	"%02x"	"\n"'	fib.bin 

 
will	print	out	the	contents	of	the	binary	file	fib.bin	in	4-byte	chunks	with	offsets	on	the	
left,	as	shown	below: 

 
00000000:24080044 
00000004:240d0074 
00000008:8dad0000 
0000000c:240a0001 
… 

 
Memory	Abstraction	(***) 

 
We	provide	a	memory	abstraction	for	the	ISA	simulator	you	are	to	implement	for	Project	1	
so	that	you	do	not	need	to	implement	memory	on	your	own.	You	must	use	this	abstraction	
to	model	memory	in	your	simulator. 

 
The	memory	abstraction	is	64	KB	(0x10000	bytes)	large.	It	has	three	main	functions	
(getMemValue,	setMemValue,	printMemory).	Each	of	these	functions	returns	0	on	
success	and	a	nonzero	value	on	failure	(an	error	message	is	also	printed	on	failure). 

 
The	getMemValue	and	setMemValue	functions	take	in	a	memory	address,	value,	and	size	
(which	can	be	byte	size	(8	bits),	half	word	size	(16	bits),	or	word	size	(32	bits)).	The	
getMemValue	function	returns	a	value	from	memory	by	reference	through	its	"value"	
parameter,	since	the	function's	return	value	is	the	status	of	the	operation	(0	on	success	and	
nonzero	on	failure,	as	mentioned	above).	The	printMemory	function	takes	in	a	start	and	
end	address	and	prints	the	values	of	memory	from	the	start	address	to	the	end	address	in	
32-bit	(4	byte)	chunks,	with	five	such	chunks	(20	bytes)	per	line.	For	example,	the	
following	three	lines	of	printMemory(..)	output	each	show	the	value	of	20	bytes	of	memory,	
starting	from	addresses	0x0,	0x14,	and	0x28	respectively. 



 
0x00000000:	0x00000000	0x00000000	0x00000000	0x00000000	0xff000000 
0x00000014:	0x00000000	0x0000c000	0x00000000	0x00000000	0x00000000 
0x00000028:	0x00000000	0x00000000	0x00000000	0x0a000000	0x00000000 

 
If	the	address	range	to	print	is	not	strictly	divisible	by	32,	the	value	of	a	few	bytes	
beyond	the	end	address	will	also	be	printed	at	the	end	of	the	output. 

 
Computers	(***) 

 
We	have	tested	the	files	for	this	project	on	the	Nobel	cluster	at	Princeton	OIT.	That	is	where	
we	recommend	that	you	work	on	the	project.	If	you	choose	to	try	to	do	this	elsewhere	(e.g.	
your	own	computer)	then	it	is	your	responsibility	to	ensure	that	it	will	work	on	Nobel	when	
we	grade	your	submission	after	you	hand	it	in.	For access to Nobel start with this link: 
https://researchcomputing.princeton.edu/systems/nobel 

 
A	note	on	Endianness:	(***) 

 
Endianness	refers	to	the	order	in	which	bytes	are	stored	in	memory	with	respect	to	reading 
and	writing	multiple-byte	words	from	memory.	Big-endian	processors	use	the	leftmost	or 
“big	end”	byte	as	the	word	address,	while	little-endian	processors	use	the	rightmost	or 
“little	end”	byte	as	the	word	address.	Thus,	for	example,	if	storing	the	value	0xAABBCCDD	at  
address	0,	big-endian	and	little-endian	processors	would	store	the	value	as	shown	in	the 
following	table: 

 
Address Big-endian Little-endian 
0x0 0xAA 0xDD 
0x1 0xBB 0xCC 
0x2 0xCC 0xBB 
0x3 0xDD 0xAA 

 
MIPS	is	a	big-endian	architecture,	while	x86	processors	(such	as	the	ones	on	the	Nobel	
cluster	and	most	laptops)	are	little-endian.	So,	in	this	assignment	you	are	simulating	a	big-
endian	machine	by	executing	the	simulator	on	a	little-endian	machine.	Thus,	if	on	an	x86	
machine,	you	read	a	32-bit	instruction	from	one	of	your	binary	test	programs	(which	are	
generated	in	big-endian	format),	the	bytes	will	be	reversed	because	the	underlying	x86	
machine	is	little-endian.	To	assist	you	with	changing	the	read	data	back	to	big-endian	
format,	we	provide	two	functions	(signatures	in	EndianHelpers.h)	to	convert	16-bit	and	
32-bit	integers	from	little-endian	to	big-endian: 

 
extern	uint32_t	ConvertWordToBigEndian(uint32_t	value);	extern	
uint16_t	ConvertHalfWordToBigEndian(uint16_t	value); 

 
You	do	not	need	to	worry	about	endianness	when	reading	data	from	or	writing	data	to	
the	memory	abstraction.	Any	endianness	issues	that	arise	with	the	memory	abstraction	
are	handled	internally	by	the	provided	code. 

 
Integer	Types	(***) 



We	recommend	you	use	the	types	for	unsigned	integers	defined	in	inttypes.h	(such	as	
uint32_t,	uint16_t,	etc)	to	represent	quantities	so	as	to	avoid	some	issues	related	to	
overflow	and	sign	extension.	The	types	in	inttypes.h	describe	both	the	type	and	size	of	
the	integer	in	question,	which	is	very	useful	when	dealing	with	code	that	requires	bit	
manipulation.	For	example,	uint32_t	is	an	unsigned	32-bit	integer,	and	uint16_t	is	an	
unsigned	16-bit	integer. 


